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1 Introduction-

This report summarizes the results obtained in a three-year investigation into the application of
wavelet methods in modulation techniques for multi-user spread spectrum communication systems.

The investigation was undertaken between November 1992 and January 1996.

2 Objectives

The objectives of this project remained essentially as outlined in the project proposal and pre-

vious status reports:

o Task 1: Development of and evaluation of wavelet symbols for multiple access spread spectrum

communications.
e Task 2: Evaluation of communication system performance.

o Task 3: Investigation of possible countermeasures to wavelet-based spread spectrum.

In addition to addressing these objectives, some basic research on wavelet analysis was performed

in connection with the project which led to a class of multidimensional generalizations of the wavelet

transform.

3 Status of Effort

The project was completed in January, 1996 with the benefit of a two-month extension of the
original three-year time line.

Task 1 led to development and analysis of a class of bandlimited orthonormal wavelet sets having
properties well suited for use with the wavelet-based scale-division multiple access communication
scheme around which much of this project was based.

Crosstalk gffects in scale-division multiple access under asynchronous and distributed operation
were studied under Task 2. Other performance questions originally planned to be addressed under
this Task were de-emphasized in later stages of the project in view of published work on performance
of wavelet-based communication protocols by other researchers.

Task 3 led to introduction and evaluation of an algorithm for detection of cyclostationary signals.
This detector was used to evaluate of the detectability of scale-division multiple access signals by

cyclostationary methods.




4 Accomplishments / New Findings

At the inception of this project, only a handful of researchers had looked into the possibility of
using wavelets [8, 44, 49, 50] or fractal signals [57, 58] in the modulation of communication signals.
The research group at Arizona State University was the first to investigate multiple access issues
in this context [8]. There are now over forty published papers in this area [2, 5, 9-13, 17-21, 24-30,
33-36, 38-45, 47, 49-50, 53, 55-59].

Work under this effort focused on wavelet-based multiple-access techniques in which digital
comn-lunicatio;l signals are encoded on orthogonal wavelet sets, as was introduced in [8] and described

in the original proposal. Highlights of the results obtained in this project are summarized below.

4.1 Orthonormal Wavelet Symbols

Scale-division multiple access (SDMA) refers to a multiple-access communication scheme in
which the orthogonal symbols are obtained by dilation and time shifting of a single prototype
wavelet. 'fhe various. ﬁsers’ messages are separated into channels based on the scale of dilation of
the wavelet symbol on which their messages are encoded — hence the term SDMA (8, 10, 52]. As
shown in these references, the spectral structure of a transmitted SDMA signal depends on the
choice of the prototype wavelet symbol in a straightforward way.

The goals in construction of wavelets for use as symbols in SDMA are different from those en-
countered in designing wavelets for other applications. For use in time-frequency analysis of signals,
for example, it is generally desirable for wavelets to have their energy simultaneously concentrated
in both the time and frequency domains in order to- provide signal analysis that is localized in the
phase plane. In spread spectrum applications, however, wavelets should be compactly supported or
highly concentrated in the time domain while having broadband frequency structure.

In general, SDMA relies on exact synchronization of all transmitters in the network to maintain
orthogonality of the signals and avoid channel crosstalk. Even if this is achieved, time delays
introduced by propagation through the transmission medium will cause the received signals to be
non-orthogonal. This issue may be addressed by requiring that the channels in the network use
symbols with Fourier transforms having disjoint supports. In this project, orthonormal wavelet
bases generated by mother wavelets whose frequency spectra are supported in several disjoint bands
were constructed.

The simplest example of a dyadic orthonormal basis of bandlimited wavelets is generated by the
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mother wavelet defined in the frequency domain by

h(w) =

(1)

1 #<|w|l<2r
0 otherwise

with ap = 2 and by = 1. A related, but more complicated, example of an orthonormal basis of

bandlimited wavelets was described by Mallat using the mother wavelet defined by

(2)

h(w) = 1 |w|e [%ﬂ',n') U [4r, 3472—#)
0 otherwise

Examination of the relationship between these two wavelet bases gives insight about how to construct
other bandlimited wavelet bases in which the dilations of the mother wavelet A do not overlap in
the frequency domain.

In what follows, the connected components of the support of a mother wavelet’s Fourier transform
h will be called “slots.” Throughout this section A will be a real-valued wavelet, which implies that
iz(—w) = h“(w) and hence the slots are symmetric about w = 0. Accordingly, when the values or
support of A are specified on the positive frequency axis, they will be assumed to be given on the
negative frequency axis by symmetry. The class of wavelets to be constructed will be categorized
according to the number of slots they have in the positive frequency axis. The wavelet defined by
(1) is thus a “one-slot” wavelet while the one defined by (2) is a “two-slot” wavelet. The following

sections describe the construction of “n-slot” orthonormal wavelet bases.

Suppose the support Sy of A is the union of n disjoint intervals
So = [s0,51] U [s2.83] U -+ U [sp-1, 4] (3)
Then the support of hﬁl is
Sm = [5027",5127"] U [$227™, 832 ™ U -+ - U [8,-127 ™, 8,27 ™]

If the measure of 5, NS, is zero for all non-equal integers m and m’, Sp will be called an orthogonal
support. In particular, an orthogonal support consisting of n disjoint intervals will be called an n-slot

orthogonal support.

If ||a]] = 1 and the support of & is orthogonal,
' 1 /.
n n — n n —
<hm,hm,> == <hm,hm,> =0

for all m # m’. In this case, for the time-shifted and dilated replicates A" of A to form an orthonor-

mal set in L?, it remains only to ensure that A? and h™, are orthonormal for n # n’ and all m.

3
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This is simplified by the observation that
{himshim) = (A5, hT)
Thus, one must only verify that all of the time-shifted replicates of A are orthonormal at a single
level of dilation.
4.1.1 Construction of Orthogonal Supports

Consider real numbers 0 < ¢y < --- < ¢, = 2¢o. Then
[co, 2¢0] = [co, €1] U [e1,€2] U [e2, €3] U -+ - U [eny, 2¢0]
Let pi1,...,p, be distinct integers and dilate each sub-interval [¢j, ¢j+1] by 2P+t to form a set
So = [c02P*,¢12P1| U [¢12P2, 522 U -+ - U [cr-12P", 2¢2P"]
= [s0,81] U [s2,83] U - U [S2n, S2n-1]

Then Sy is clearly an n-slot orthogonal support. Conversely, suppose S is an n-slot orthogonal
support of the form (3). Then it is straightforward to show that Sy can be generated by the method
Jjust described with possibly some subintervals deleted.

4.1.2 Orthonormality of the Wavelets

Suppose ||A|| = 1 and the support of A is orthogonal. Then {h7.} is an orthonormal wavelet set

if and only if (A%, hZ') = 0 for all integers n and n’ with n # n’. This is equivalent to

0 = (gmgyzéhu-mvu—nnm

: / €_inwiz(w)€in/wil*(w) dw = -j._/ ei("/“n)wlh(w)IQ dw
E 2r JR

2r

for all » # n'. With & Sn-n # 0, this expression becomes

/awmmpm:o (4)
R

for any non-zero integer k. The following section presents some orthonormal wavelet sets corre-

sponding to certain solutions of this equation.




' 4.1.3 Flat n-Slot Orthonormal Wavelets

The first n-slot orthonormal wavelets constructed were similar to the wavelets defined by (1)
and (2) in that their Fourier transforms are constant on the n slots and zero elsewhere. These will
be called flat n-slot wavelets. Construction of “non-flat” n-slot orthonormal wavelets is undertaken
in the next section of this report.

Let
V = [c027,¢12P1] U [¢1272,¢22P2) U - - - U [ep 1 2P7, €n2P"]

where 0 < ¢g < ... < ¢p, = 2¢p and py, po, . .., Pn are integers and define
e -1/2
=|=) 2P(c; —c;_
o 7"]-; (¢;—¢j-1)

Then if A(w) = a for w € V and h(w) = 0 otherwise, llR]| = 1 and equation (4) reduces to

kw3 2 -
[ e th? e .
R
5 —co‘2P1 c12P1 —cy po ”9‘7?2 —Cn—12Pn cn 2P "
. thw g |
—¢y2P1 c92P1 2 2P 12P2 —¢p 2PN Cn_12Pn
c;2P1 “,)2}70 ‘_’12}7“
= / / ) cos(kw) dw
co2P1 c12P2 Crn—12Pn

_ 2_{_ sin(co2”k) + sin(c12”1k) — sin(c1272k) + sin(ca2P2k) —
<+ —sin(e,—12P7k) + sin(c,2Pk)} = 0

for all k # 0. This is equivalent to
—sin(co2P' k) + sin(c127* k) — sin(c1272k) + sin(¢y2P?k) — - - - — sin(cn-12P7k) + sin(c,2P7k) = 0 (5)

for all k # 0. If ¢p2P1, ¢12P1, 1272, €322, ... ¢,_12P~, and ¢, 2P" satisfy equation (5), then so will
Mcg2Pr, Mcei2Pr, Mcey2P2, Mcy2P2, ..., Me,—12P~, and Mc,2P for any natural number M. Thus,
there exists a support of lowest dilation level which will be called the mother support. In other

words, if the end points of the support
V = [c02™,¢12P] U [127%,¢22P2) U - - - U [ 2P7, €, 2P"]
satisfy (5) and the end points of the dilated support
[c027t /M, 127 [M] U [¢1272 /M, €327 [M] U - - - U [eq12" /M, € 27" | M]

do not satisfy (5) for any M € N, then V is the mother support.




Example 1 In the one-slot case, the support consists of only one interval [co2P1, 2¢92P1] with co > 0.

Denoting a = c027’1 equation (5) becomes — sin(ak) + sm(Zak') =0, or
sin(ak)[2 cos(ak) — 1] =0

The only non-trivial solution of this equation that holds for any non-zero integer k is a = mwx with
m € N. Hence, the support is [mn, 2m=], the mother support is [r, 27], and an orthonormal wavelet

basis obtained having the mother wavelet defined in equation (1).

Example 2 In the two-slot case, the cut points co and ¢; and the dilation p should satisfy
—sin(cok) + sin(c1k) — sin(e;2Pk) + sin(2¢92Pk) = 0
This equation can be decomposed into two equations (with loss of some solutions)
sin(2¢o2Pk) — sin(cok) = 0
{ sin(c;2Pk) — sin(e1k) = 0

which can be solved simultaneously under the additional conditions ||&|| = 1 and & = 1 to yield

— 2P
Co= 3117
=7

With p = 0 and ¢g = 7, the wavelet obtained is the one defined in equation (1);p=2and ¢ = f:ﬁ

yields the wavelet of equation (2). For p =1 and ¢ = %F, a new bandlimited orthonormal mother

wavelet defined by

h(w)
0 otherwise

() = { 1 |o]e [%r,ﬁ)u [2%,%7:)
is obtained.

4.1.4 Non-Flat n-Slot Orthonormal Wavelets

Denoting % = |A|2, equation (4) becomes

/ €5 ()| dw = / B(w)e™ dw = 2 (k) = 0. (6)
R R
for all non-zero integers k. This formulation leads to the following:

Theorem 1 Let ¢ be a real-valued and non-negative function with orthogonal support. Further
suppose [z H(w) dw = 27 and ¥(k) = 0 for all non-zero integers k. Then with |h| = \/’; and the

phase of h chosen arbitrarily (except for conjugate symmetry), h is an orthonormal mother wavelet.




In view of this result, construction of the desired non-flat wavelets hinges on finding functions

¥ having the properties specified. Such functions may be constructed as follows.
. A sin(7 . . .
Denote sinc(t) = ﬂr—‘gt—) and observe that sinc(k) = 0 for all non-zero integers k. Its Fourier

transform has values

— 1 |wl<w
sinc(w) =
0 otherwise
Suppose S = [co2P1,¢12P1| U - - - U [cp—12P", ¢, 2P7] is an n-slot orthogonal support in which each
slot has measure larger than 2x. Let f be any non-trivial L? function supported in [co2P' 47, ¢; 27! —
®]U - U [en-12P" 4+ 7, ¢,2°" — ] (figure 1) and whose convolution with sinc is non-negative. Then
P(t) = f(t)sinc(t) is zero for all non-zero integer values of ¢, ¥ = [sTn\c % f] is non-negative, and the

support of b is orthogonal. Hence, an orthonormal mother wavelet h can be obtained by letting

- '27r2&
AP =
Jav(w) dw
and setting the phase of A arbitrarily.
(a)
L SIR —-cm--------s >
w
2% c 2
k-1 k
(®)
()]
¢ 2% ¢ 2% ¢

Figure 1: (a) Each interval in the original n-band orthogonal support S has length larger than 2.

(b) The support of f is formed by shrinking each interval in S by 7 on its left and right ends.

Note that A may be a dilated version of another orthonormal mother wavelet. If after rescaling,
there exists some N € N, such that h(2-Vt) satisfies equation (4), i.e.,
[ e 1h2Vew) P dw = 0
R

for all nonzero integers k, and

/ kBN )2 dt £ 0
R

for some nonzero integer k, then A’ defined by A'(t) = 2=V/2h(27Nt) is also an orthonormal mother

wavelet.
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The first part of the following result is a consequence of the above construction; the converse

portion is proven in [10].

Theorem 2 For any n-slot orthogonal support So, there ezist orthonormal mother wavelets having
support So. Conversely, any n-slot orthonormal mother wavelet can be constructed in the way

discussed above.

Example 3 Let ¢o = 7, py = 1, ¢, = 77/4, and ¢z = 2. Then the support of & is [r, 7 /4]U [T, 8x].
Expand this support by a factor of 4 to [47, 77| U [287,32x] to make the length of each interval
larger than 27. Choose the support of f to be [57,67] U [297,317] and generate f subject to the
condition that f « sinc must be real and nonnegative; here define f by

f w

( )_{ 1 57 < |w] £ 67 and 297 < |w] < 31w

0 elsewhere
Then
P(w) = [f * sinc)(w)

and 7 is as shown in figure 2. Taking the square root of 9 as the absolute value of & and imposing

zero phase, the orthonormal mother wavelet with Fourier transform depicted in figure 3 is obtained.

V)

2& N, ©
0 ¢ 4r 5r 61 = << 28r 297 30m  3lzx 32r

Figure 2: Convolution of f with the Fourier transform of a sinc function ensures Y(k) = 0 for all

non-zero integers k.

4.2 Orthonormal Wavelet Symbols with Frequency Overlap

If bandlimited wavelets are to be used as orthogonal symbols in a low-probability of exploitation
(LPE) communication system, it may be desirable to have the bands overlap to avoid the possibility
of an unintended receiver separating the channels using a relatively simple bank of bandpass filters.

Following a technique developed by Suter and Oxley [46], bandlimited wavelet symbols have been




A
h{w)

2\ W) ®
1] < 4n 5t 24 KL « 28 29 30 3ir  32x

Figure 3: An orthogonal mother wavelet A is obtained as the inverse Fourier transform of the square

root of 1/1

developed whi'ch (i) generate orthonormal sets and (ii) whose replicates at different scales overlap
in the frequency domain. The approach is summarized below.

The construction given in [46] assumes that the real line has been partitioned into disjoint
intervals Ij, j € Z. If {fjx|k € Z} is an orthonormal basis for L%(I;), then {f;4lj, k € Z} is an
orthonormal basis for L2(R). A new orthonormal basis is constructed by extension of the functions
fik off the interval I in a specific way, resulting in a basis in which the elements “overlap.”

This construction is modified to the wavelet case to construct “overlapped” bandlimited or-

thonormal wavelet symbols as follows. Let A be a bandlimited wavelet having the properties:

1. The Fourier transform A of A is real-valued and even. The steps in the construction described
below apply to the portion of 2 on the positive frequency axis and are assumed to also be

applied to the portion of A on the negative frequency axis to maintain even symmetry.

2. The support of A is orthogonal in the sense introduced above; i.e., the portion on the positive

frequency axis is of the form
[2%7,2%a,]U-- U [2%ra,_q,2%727]

where n > 1, 7 < a3 < -+- < ap—; < 27, and dy, ..., d, are integers. The construction given

here also assumes d; # 2d,.

For integers j and k, define

hik(t) = 2%k (t_.;]k> (7)

and denote by izj,k the Fourier transform of Aj .
Suppose {h;i|j,k € Z} is an orthonormal basis of L%(R) (some examples of such bases are

constructed above and others are described in [6]). With € < min{(a; — 7)/2, (27 - an_1)/2},

define an extension f:z of h by
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‘1. Constructing the odd extension of A about the point 2% 7 into the interval 2% (7 =€), 2% 7];

2. Constructing the even extension of 4 about the point 242 into the interval [24727, 2% (27 +¢)];

and
3. Repeating these steps on the negative frequency axis to preserve even symmetry.

An example is shown in figure 4 using Mallat’s wavelet defined in equation (1).
Denote the extended wavelet just constructed by h and let W denote an frequency domain
window function with support identical to that of & and with the amplitude normalization properties

described in [46]. An example of W is depicted in figure 4. With u defined by
i{w) = B(w)h(w) (3)

the set {u;x|j,k € Z} is shown to be an orthonormal wavelet basis of L%(R). Also, by construc-
tion, the dilated replicates of & have non-trivial overlap. Figure 5 shows a particular overlapped

bandlimited orthonormal wavelet symbol #(w) constructed in the above example.

12
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Figure 4: Initial frequency extension f:L(,u) of the wavelet h (left) and the window function @(w)

applied to it (right).

4.3 Countermeasures

A detector for cyclostationary signals was developed during this effort. This detector (depicted
in figure 6) uses magnitude-squared coherence (MSC) estimation as a measure of the spectral cor-
relation in a signal. The use of MSC estimation allows the statistical behavior of the detector
in a noise-only environment to determined analytically and threshold values corresponding to de-
sired false alarm probabilities to be computed [15, 16]. These capabilities represent a substantial

improvement over similar cyclostationary detectors described in the research literature.
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Figure 6: Discrete-time version of cyclostationary feature detector.

Receiver operating characteristic (ROC) curves for this detector against various types of cy-
clostationary communication signals have been determined by (i) using the analytical results to
set detection a threshold for a particular false alarm probability, and then (ii) running computer
simulations with signal present to estimate the corresponding detection probability. Performance
results were obtained by applying the detector against standard communication signals (e.g., polar
BPSK) and against some LPE-type communication signals, including direct sequence spread spec-
trum, transmitted reference spread spectrum, and SDMA signals. The case of SDMA signals was
of particular interest in this project, and is discussed further below.

Consider an M-channel SDMA signal r described by

M-1 o

rt)= ) D bna¥i(t) (9)

m=0 k=—co

where b, . represents the kR bit on the mth channel and YT is kR time-shifted replicate of the

wavelet symbol ¢ at dilation level m. The spectral correlation density (SCD) of such a SDMA signal




was found to be

-] BEE L (EE o(o-) w2

where ¥ is the Fourier transform of ¥, f is the spectral frequency, a is the cyclic frequency, and T}

is the fundamental bit period (i.e., the time shift required for orthonormality of the wavelet symbols |

at the lowest scale of dilation). This expression shows that the SCD of a SDMA signals will be
non-zero only at cyclic frequencies that are integer multiples of 1/T,. This behavior, which has also
been verified empirically, indicates that SDMA signals exhibit cyclostationary characteristics that
can possibly be exploited for the purpose of signal detection.

The cyclostationary feature detector was applied to detect the presence of a SDMA signal in
noise. A six-channel SDMA signal was used as the input signal-for the single-cycle detector. The
wavelet symbol used in the SDMA signal was the Daubechies-4 wavelet. An initial analysis was
performed to determine at which values of & the spectral correlation density would be nonzero. It
was found that the SCD had a strong component at & = 26/Ty and f = 0. The single-cycle detector
was set to operate at these values of f and o. The number N of independent samples used in the
correlations performed by the single-cycle detector was set to 32. The bandwidth of the single-sided
bandpass filters was set to 1.28/T;. Simulations were run at three different SNR's: 0dB. 3dB and
9dB. One thousand outputs were used in obtaining the empirical cumulative distribution for each
SNR setting. The ROC curves obtained by this procedure are shown in figure 7. These results
suggest that SDMA signals are vulnerable, at least to some extent, to detection by cyclostationary
methods.

Another detector for polycyclic signals based on generalized coherence estimation [7] has been
defined and its application against various types of communications waveforms, including SDMA,

is currently under investigation.

4.4 Generalized Wavelet Transforms

Work in connection with this project has led to consideration of how the continuous wavelet
transform can be generalized to higher dimensions. Some mathematical results arising from this
work and a connection with image analysis are summarized in this section.

Several multidimensional generalizations of the one-dimensional wavelet transform are currently.

In the most widely known (and obvious) generalization, one-dimensional transforms are applied

12
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Figure 7: ROC curves for the single-cycle detector with a six-channel SDMA signal at its input.

separately in each orthogonal direction. In what follows, this will be referred to as the rectilinear
wavelet tranéform; it is the method used by most wavelet-based image compression techniques.
Another wavelet generalization is the two dimensional transform by Murenzi[37], literature on which
can be more easily found in the paper by Antoine et al. [1]. Here, it will be called the circular
wavelet transform, since it generalizes the dilations of the wavelet transform to the set of dilations
and rotations on R2%. Neither of these generalizations encompasses the other. Thus, a question of
interest is whether there is a stronger generalization that encompasses both. The remainder of this
section describes a generalized wavelet transform that includes as special cases the one-dimensional,
rectilinear, and circular wavelet transforms. Among the multidimensional wavelet transforms that
arise from this approach are several that appear to be unknown in engineering applications. The
circular wavelet transform is shown to arise as a result of the relationship between R? and C in the
context of this generalization and is further shown to be strongly related to the cortex transform
of Watson [34]. An implementation of the cortex transform from the circular wavelet transform is

developed as an example of this relationship.

4.4.1 Theoretical development

Recall first the essentials of one-dimensional wavelet analysis, details of which can be found in

[14]. With a,b,z € R, A € L%(R), and & the Fourier transform of k, define

[ae9] 5) = = (222)

13

DY B ST W S R i




and

C, /|h(:c)|2 ..

If C, is finite, h is admissible. In this case, the reconstruction theorem states that any f € LY(R)

can be reconstructed from its wavelet coefficients <f, A(“’b)h> by the formula

ab ab)
Ch//mazfA RYACHh db da.

The rectilinear wavelet transform generalizes the one-dimensional transform to a separable mul-

tidimensional transform by letting a,b,z € R, i.e.,

ay by Ty

an bn Tn
with the following alterations in the definitions and theorem:

z1-by
ay
[A(ayb)h] (;1;) = -Tl-——{jl; h

Tn—bp
an

Cum [ M,
2n |1-1...1-n|

:Cih/ /R (£, ACORY D db da.
on S T

This generalization is equivalent to taking the one-dimensional wavelet transform successively in each
orthogonal direction of the multidimensional space. For n = 1, the rectilinear wavelet transform
reduces to the one-dimensional wavelet transform.

An alternative generalization of the one-dimensional wavelet transform to B2 is the circular
wavelet transform [1, 37], for which a € R is replaced with the pair (a,8) € R x [0,27) and b € R is
replaced by b = [b, bg]T € R2. Let ry denote the matrix which performs rotation in R? by 6 degrees.

Then the definitions and theorem for circular wavelet analysis are

1
[A©@98] (2) = ~h(a7trog(z - b))
2
_ [ ter,
2 ||z|]
- i//%/ (£, AP RYA@SOh  db d da
ChJrJo JR2 a* )\’ o
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Clearly, the circular wavelet transform has a different character than the rectilinear wavelet

~ transform on R% In particular, it allows non-separable wavelets in two dimensions and replaces

independent dilation in each dimension by rotation and dilation simultaneously in both dimensions.
Despite their dfstinct characters, both the rectilinear and circular wavelet transforms arise as special
cases of a more general multidimensional wavelet transform, the formulation of which is based on
ring multiplications on RZ.

Consider R™ as a Qector space over the field R. If a ring multiplication “o” is introduced to R™
so that R™ becomes an algebra under the multiplication then there is, for each a € R™, a left regular
representation L, : R® — R"™ defined by L,z = a o z. There is also an associated linear operator
Sz : R — R™ defined by Sya = L, z. Suppose the ring multiplication has the property that the set
of elements with ring inverses are dense in R™. Then, with A € L*(R") and a, b,z € R", the following
definitions and theorem form the mathematical foundation of a generalized multidimensional wavelet
analysis:

1

[A(avb)h} (:L') = mh(«Lu_l(z - b))7

_ [ @),
Ch _/E.n ]det5r|d£'

1 1
= ———— N CILF VN COV S
f Ch/n/n[detLa|2<f’ > ¢

As examples of this, suppose the ring multiplication on R" is defined by

ay by a1b
0 =
Gn b, anby,
then L, and S, are the diagonal matrices defined by L, = S, = diag(ay, as,...,a,). This makes the

generalized definitions and theorem equivalent to the definitions and theorem of rectilinear wavelet
analysis. Since rectilinear wavelet analysis with » = 1 is the same as one-dimensional wavelet
analysis, both one-dimensional wavelet analysis and rectilinear wavelet analysis arise as special
cases of this formulation.

Similarly, circular wavelet analysis comes from the ring multiplication “o” on R? defined by

a1 by arby — azbsy
(o] =

asz by aibs + asb;

This ring multiplication is same as the multiplication of the complex numbers. In this case

ay —a
L, = =lalr/,,
az a1
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and the generalized definitions and reconstruction theorem become equivalent to the definitions and

reconstruction theorem of circular wavelet analysis.

4.4.2 Connection to the cortex transform

Circular wavelet analysis has fundamental variables of scale (which corresponds to logarithmic
frequency), rotation, and two-dimensional positional shift. These correspond to the basic organiza-
tion of Watson’s cortex transform[54], which was devised as a means to process images in a similar
way to the processing in the human visual cortex. Hence there is a relationship between the circular
wavelet transform, the cortex transform, and image processing in the human visual cortex. It is
shown here that this relationship can be strengthened by actually deriving the cortex transform
from the circular wavelet transform.

The cortex transform was implemented by Watson by partitioning the frequency dom.ai.n into
separate angularly oriented regions at logarithmically spaced frequency steps, bandlimiting the
image to each region, and sampling the bandlimited pieces as efficiently as possible using available
techniques from sampling theory.

Following a similar procedure, the frequency domain can be divided according to the figure

below, where zero frequency is in the center:

This division corresponds to a discrete sampling of the frequency and rotation variables of the
circular wavelet transform. In order to bandlimit the image to a given region, the “mother wavelet”
h is chosen so that its Fourier transform A is the characteristic function a bin, which consists of two

opposing frequency regions as shown below:
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Once the image is bandlimited to a bin, positional samples are used to represent the bandlimited
function. These positional samples produce frequency replications. Aliasing is avoided by preventihg

these frequency replications from overlapping. An example of an optimal sampling for a bin is shown

below.

This frequency replication pattern is according to theory the optimally efficient replication that
avoids aliasing, but in practice aliasing is not avoided due to filter imperfections. Thus, it is often
desirable to introduce a controlled amount of inefficiency in order to reduce aliasing. In this case,

the frequency replication pattern looks more like this:

The efficiency of this sampling is controlled, so it is easy to make it more efficient than the fixed
efficiency sampling proposed by Watson.

Preliminary results show that the transform adequately represents an image and reconstructs
it from its representation (figure 8). In order to obtain these results, special consideration must
be paid to preserving frequencies near zero, since the transform has a singularity there. It is also
crucial that the image be of relatively large size (at least 256 x 256 pixels), since the processing
assumes an image is continuous, and the violation of this assumption by a coarsely sampled image

introduces significant artifacts.

5 Personnel Supported
Personnel contributing to this research effort were:

e D. Cochran, Principal Investigator

e S. Enserink, Research Assistant

17




Figure 8: The Leena image (left) and the result after it has been decomposed and reconstructed by

the transform (right).

e S. Han, research Assistant

R. Martin, Research Associate
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C. Wei, Research Assistant
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7 Interactions/Transitions
Ta. Meetings, Conferences, and Seminars

Numerous university and industrial colloquium presentations have been presented on the research

performed in this project. These include:

e D. Cochran presented a talk entitled “Wavelet-Based Multiple-Access Spread Spectrum” in the

Motorola Government Systems and Technologies Group Signal Processing Series [16 attendees]
in March 1993.

¢ D. Cochran presented a talk entitled “Detection of Cyclostationary and Polycyclostationary
Signals” at the DSP group meeting at MIT [17 attendees] in October 1994. During the same
visit, he met with A. Willsky, C. Karl, and R. Learned to exchange ideas on wavelet and

wavelet-packet methods in spread spectrum.

 D. Cochran presented a talk entitled “Multidimensional Wavelet Generalizations and Watson’s

Cortex Transform” in the Vision Seminar at Harvard [25 attendees] in September 1994.

¢ D. Cochran presented a talk entitled “Wavelet Applications in Communications” in a seminar
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sponsored jointly by the DSP and Communications groups at Geo.rgia, Tech [45 attendees] in

October 1994.

In addition, D. Cochran participated in the following conference activities related to the topic

of this project:

o He organized and chaired an invited session entitled “Applications of Wavelets and Chaotic
Signals in Communications” at the Asilomar Conference on Signals, Systems, and Comput-
ers in November 1993. Participants included R. Orr (Atlantic Aerospace), S. Isabelle (MIT),
M. Motamed and A. Zakhor (UC Berkeley), C. Wei (Arizona State University), and J.S. Gold-
stein (USAF and Georgia Tech).

o He was a keynote speaker (with J.J. Benedetto, M.V. Wickerhauser, and W. Sweldens) at a
wavelet applications workshop in Melbourne, Australia in February 1995. The topic of this

presentation was wavelet applications in communication systems.

o Heis scheduled to be plenary speaker (with L. Cohen) at the ANZIIS-96 Conference in Novem-.

ber 1996.

7b. Consultive and Advisory Functions

During this project, D. Cochran consulted informally with J. Stephens at Wright Laboratory
and with Capt. J.S. Goldstein and Dr. A. Lindsey of Rome Laboratory on applications of wavelets
and cyclostationary signal processing in covert communications and countermeasures. He has also
been collaborating with the Centre for Signal and Information Processing Research (CSSIP) and
the Defence Science and Technology Organization (DSTO) in Australia on wavelet applications in

communications and other topics.

Tc. Transitions

None.

8 New Discoveries

No inventions or patent disclosures have resulted from this research program.
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9 Honors /Awards

None.
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